Limit cycles for generalized Kukles polynomial differential systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Cycles for a Generalized Kukles Polynomial Differential Systems

We study the limit cycles of a generalized Kukles polynomial differential systems using the averaging theory of first and second order.

متن کامل

Limit Cycles of the Generalized Polynomial Liénard Differential Equations

We apply the averaging theory of first, second and third order to the class of generalized polynomial Liénard differential equations. Our main result shows that for any n, m ≥ 1 there are differential equations of the form ẍ+f(x)ẋ+g(x) = 0, with f and g polynomials of degree n and m respectively, having at least [(n + m− 1)/2] limit cycles, where [·] denotes the integer part function.

متن کامل

On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = −y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any...

متن کامل

Limit Cycles and Invariant Parabolas for an Extended Kukles System

A class of polynomial systems of odd degree with limit cycles, invariant parabolas and invariant straight lines, is examined. The limit cycles can be obtain as a bifurcation of a non hyperbolic focus at the origin as Hopf bifurcations. We will also obtain the necessary and sufficient conditions for the critical point at the interior of bounded region to be a center. 2010 Mathematics Subject Cla...

متن کامل

Centres and Limit Cycles for an Extended Kukles System

We present conditions for the origin to be a centre for a class of cubic systems. Some of the centre conditions are determined by finding complicated invariant functions. We also investigate the coexistence of fine foci and the simultaneous bifurcation of limit cycles from them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2011

ISSN: 0362-546X

DOI: 10.1016/j.na.2010.09.064